
IST346
Data and Database Systems



Agenda

• Data

• Databases

• Backup



Data



A Organization’s Most Important 
Asset… is It’s Data!!!

• Data Drives the Business

• Identify trends so you can respond

• Use knowledge as competitive advantage



Prevalence of Data

• Data are everywhere!

• There has been an explosion of data over the 
past few years.

• There are new varieties of data. 
• Business data → Sales and Orders

• user generated → Tweets and Posts

• device generated → Phones and IoT

• And there are different mediums than before.
• Structured text → unstructured text →multimedia

School of Information Studies | Syracuse 
University

5



Data Explosion: A Sample Growth of 
Organizational Data Over Time

D
at

a 
V

o
lu

m
e

Years

Business 
Data

Web/Clickstream Social 
Networks

Mobile Sensor/IoT

1980 1990 1995 2000 2005 2010 2015 2020



What About Devices?

2015

18.2B

2009

IoT
Inceptio
n

Billions of Devices

50

40

30

20

10

0
1988 1992 1996 2000 2004 2008 2012 2016 2020

2016

22.9B

2014

14.2B

2003

0.5B

1992

1M

2012

8.7B

2017

28.4B

2019

42.1B

2018

34.8B

2020

50B

2013

11.2B



Data Have Always Held Value

The more 
data, the 

greater the 
chance for 

value

But the more 
effort is 

required to 
extract that 

value

School of Information Studies | Syracuse 
University

8



Recall: Layers of a Modern 
Data-Oriented Application

School of Information Studies | Syracuse 
University

9

Presentation

Code and layout 
responsible for 
the user 
interface

Business Logic

Transformationa
l logic at the 
heart of what 
the application 
actually does

Data Access

Create, read, 
update and 
delete (CRUD) 
operations

Database

Data storage 
and retrieval



Presentation Layer

• User interface 
concerns

• Web: HTML 
and CSS

• Mobile: Xcode 
interface 
builder/ 
Android studio

School of Information Studies | Syracuse 
University

10



Business Logic Layer

• Main transformational 
logic of the application; 
part of the application’s 
functionality 

• Written in a programming 
language: Java, JavaScript, 
Python, C#, and so on

School of Information Studies | Syracuse 
University

11



Data Access Layer

• Responsible for 
CRUD operations

• Typically, this is 
code that 
transforms 
operations into the 
DSL (domain-
specific language) 
to communicate 
with the database 
(typically SQL)

School of Information Studies | Syracuse 
University

12



Database

• A generic term for the storage, management and 
retrieval of data 

• Many Types Exist

• Serve Several Purposes



Types of Databases



Relational Databases

• Based on Relational theory, data are stored as 
rows in tables.

• Very proven database model with wide 
adoption in industry

• Uses custom query language SQL

• Does not scale easily horizontally

• Use cases
• You need data consistency 
• Ad-Hoc Reporting and Querying 

• Products
• Oracle, Postgres, SQL Server, MySQL



Key-Value Stores

• Basically a persistent hash map
• Simple
• Fast reads and writes
• No secondary indexes

• Scales Horizontally

• Use cases
• Data model is simple
• All you need is CRUD (Create/Read/Update/Delete)
• Caching frameworks

• Challenges
• Difficult to perform complex queries

• Products
• DynamoDB, Riak, Redis



Columnar Stores

• Data in tables are stored by column instead of by row

• Storage not wasted on null values

• Fast operations on columns such as aggregation of data

• Scales horizontally

• Use cases 

• Data analytics, big data sets

• Timeseries data

• Challenges

• Key design is not trivial

• Need to split data according to how it will be queried

• Products

• HBase, Cassandra, MemSQL



Document Stores
• Nested structures of hashes and their corresponding values

• Very flexible schema
• No need to normalize

• Use cases 
• Applications where the schema is likely to change
• When you don’t need the flexible query of relational, 

but need better performance

• Challenges
• Complex queries with joins are slow
• Documents which reference themselves and other 

circular dependencies

• Products
• MongoDB, CouchDB, RavenDB



Graph Data Stores

• Nodes and edges
• Good fit for highly interconnected data
• Allows for explicit relationships among data items
• Based on Graph theory

• Use cases 
• When your data look like a graph or hierarchy

• Challenges
• Does not scale well horizontally
• Very specific use cases—know when to use it!

• Products
• Neo4j, SQL Server Graph Tables



When You Treat Every Data Problem Like a Nail, 
The Same Database System Becomes a Hammer



One Size Does Not Fit All

• There is no one database management system 
that can handle the complexity and variety of 
data found today. 

• This is why different systems exist to manage 
different types of data that vary in:
• Structure
• Size
• Rate of change

• We’ve learned the hard way that not all data 
problems are nails, and there is more than just 
the hammer.



So How Do You Choose?

• What type of data model is it? Graph? 
Timeseries? Real-time? Historical?

• Do you need a schema (structure)? Does it 
require schema on write or on read?

• Would you benefit from integrity constraints, 
or do you need to guarantee writes?

• Do you have cross-cutting query concerns?

• Do you need to scale out?



Don’t Settle for One—
Polyglot Persistence!
Today’s enterprises have many databases:

• Product catalog and blog in MongoDB

• Redis for your shopping cart and web page cache

• Cassandra for audit and activity logs

• MySQL for order processing and payments

• Hadoop for data analytics

• Neo4j for your social graph

• Hammer. Nail. Screwdriver. Screw. Use the right 
tool for the job!



Polyglot Persistence

Pros Cons

• There is better performance 
and scalability.

• It is cloud friendly in today’s 
world of microservices.

• Using the best tool for the 
job! Stop forcing that square 
peg into that round hole!

• No interoperability: You must 
connect the databases 
together.

• You must decide where data 
should be stored.

• There is increased complexity 
and administrative burden.



Databases and Scalability



DBMS Scaling: Up vs. Out

Vertical “Scale Up” Horizontal “Scale Out”

• Add more resources to an 
existing system running the 
service

• Easier, but limited scale

• Single point of failure

• Run the service over multiple 
systems, and orchestrate 
communication between 
them

• Harder, but massive scale

• Overhead to manage nodes



School of Information Studies | Syracuse 
University

27

It’s very hard to scale 
out a relational 
database. 

But why?





CAP Theorem of Distributed Data 
Stores
• Eric Brewer: You can only have two of the following three 

guarantees: 
1. Data consistency: all nodes see the same data at the same time
2. Data availability: assurances that every request can be 

processed
3. Partition tolerance: network failures are tolerated, the system 

continues to operate

• Relational systems are designed to be consistent and 
available and therefore cannot be partition tolerant.

• If I deposit money in an ATM that is disconnected from the 
network, how can my bank know about that deposit?



Why Can’t You Have It All?

• Suppose we lose partition tolerance between nodes.
• We must ignore any updates the nodes receive, or sacrifice 

consistency, or we must deny service until it becomes 
available again.

• If we guarantee availability of requests, despite the 
failure:
• We gain partition tolerance (the system still works), but lose 

consistency (nodes will get out of sync).

• If we guarantee consistency of data, despite the failure:
• We gain partition tolerance (again, system works) but lose 

availability (data on nodes cannot be changed, failure is 
resolved).

School of Information Studies | Syracuse 
University

30

Node 1 Node 2



Database Systems and CAP

Consistency

Partition

tolerance
Availability

X

Relational

AP

CA CP

Single-master

Eventual consistency



CAP: All Kinds of
Database Systems
• RDBMSs like Oracle, MySQL, and SQL Server:

• Focus on consistency and availability (ACID principles), sacrificing 
partition tolerance (and thus they don’t scale well horizontally)

• Use cases: business data, when you don’t need to scale out

• Single-master systems like MongoDB, HBase, Redis, and 
HDFS:
• Provide consistency at scale, but data availability runs through a 

single node
• Use cases: read-heavy; caching, document storage, product catalogs

• Eventual Consistency systems like CouchDB, Cassandra, 
Redis and Dynamo:
• Provide availability at scale but do not guarantee consistency
• Use cases: write heavy, isolated activities: shopping carts, orders, 

social media 



ACID vs. BASE

ACID BASE

School of Information Studies | Syracuse 
University

33

• Atomic: Everything in a 
transaction succeeds, or the 
entire transaction is rolled back.

• Consistent: A transaction cannot 
leave the database in an 
inconsistent state.

• Isolated: Transactions cannot 
interfere with each other.

• Durable: Completed transactions 
persist, even when servers
restart and so on.

• Basic availability: Data can be 
read and written to any node.

• Soft-state: Nodes may change 
over time, even without direct 
updates.

• Eventual consistency: At some 
point all nodes will have the same 
data.



Backups and
Data Integrity



3-2-1 Data Strategy

• 3 Copies of your data

• 2 Copies are backups (one is “live”)

• 1 Backup Copy is Off-Site



Why Backups?
• Data gets lost

• People delete data by mistake (or on purpose)

• Archival Purposes

• Legal Issues / Subpoenas

• Data gets corrupted 

• Systems crash / Disks fail

• Notebooks get lost / stolen

You need your backups to be reliable.



Multiple Ways to Backup

• Image Backups

• “Classic” Tape Backups

• Disk-to-disk-to-tape backups (D2D2T)

• Disk-to-disk-to-disk backups (disks are cheap)

• Offsite Backup services (backup over the internet)



Why restores?

• Most Common:  Accidental File Deletion /  corrupt data
• So common that snapshot technology is used. 

• Mac time machine / Windows File History / system restore

• Pull from Archives
• Historical snapshots of data.

• Need recovery of user’s files or email after they’ve left the 
org.

• Least Common: Storage Failure
• Fault-Tolerant system (RAID) failure

• Loss of data and loss of service, too



Data Integrity

• Data Integrity – ensuring your data is accurate.

• How does it become corrupted?
• Viruses / Malware

• Buggy Software

• Hardware failures

• User Error

• How to you ensure data integrity?
• Hashing – compare file to its checksum MD5/SHA256

• Keep anti-malware software current

• Backing up inaccurate data is useless!



Types of Backups
• A full backup (level 0) is a complete copy of a 

partition.

• A differential backup (level 1) is an archive of only the 
files that have changed since the last full backup.

• An incremental backup (level 2, 3, etc) is an archive of 
only the file that have changed since the last backup 
(not necessarily full backup.

Backup Sun (F) Mon Tue Wed Thu Fri Sat

Full 2TB 2TB 2TB 2TB 2TB 2TB 2TB

Diff. 2TB 1GB 1.2GB 1.6GB 1.9GB 2.3GB 2.8GB

Incr. 2TB 1GB 0.2GB 0.4GB 0.3GB 0.4GB 0.5GB



Differential or Incremental?

• Differential backup
Advantages:  quicker recovery time, requiring only a full 
backup and the latest differential backup to restore the 
system. 
Disadvantage:  for each day elapsed since the last full 
backup, more data needs to be backed up, especially if 
a majority of the data has been changed.

• Incremental backup
Advantages: quicker backup times, as only changed 
files need to be saved. 
Disadvantage:  longer recovery times, as the latest full 
backup, and all incremental backups up to the date of 
data loss need to be restored.

http://en.wikipedia.org/wiki/Differential_backup
http://en.wikipedia.org/wiki/Incremental_backup


Differential vs. Incremental

Differential Incremental



Testing Backups

• Periodically test your backups by performing 
restores.

• Why?
The only way you know your backups are 
working is to restore data from them and 
test.

• Backups are no good if you can’t restore 
from them.

• Backups are one of the most understated 
processes in IT management but one of the 
more important.



Backup Strategy
• You can’t backup everything all the time and keep it 

around forever. 
• It’s just not realistic.

• You need a combination of short-term and long-term 
backups.
• What if you need files from 12 months ago?

• You should  draft a backup and restore SLA 
• Through the SLA, customers know what to expect

• Plan your backups around the SLA

• Mitigate risk
• Don’t store your backups next to your servers!

• The restore requirements govern your backup strategy.



Backup Strategy #1

• Backup
• Sunday L0

• Monday – Saturday L1 (Diff)

• Each week, an L0 is saved for a year.

• Week 52 is saved as year-end backup (not reused)

• Can this strategy Restore
• A file from 4 days ago?

• A file from 5 weeks ago?

• A file from Last July, that was deleted in August?



Backup Strategy #2

• Backup
• Full 1st Day of each month

• Differential each remaining day of the month.

• Media on 1st day of the month not reused.

• Can this strategy Restore
• A file from 25 days ago?

• A file from 60 days ago?

• A file from 1 year ago that was around for 2 months.


