
Service Application
Architectures

What do we mean by Service?

• A Service is a running application or process accessible by users
and other applications.

• Email is an example of a Service Application.
• Most services are complex, consisting of multiple dependent

services.
• For example to offer a web-based Email service application like

Gmail you need these dependent services at minimum:
• Web server (HTTP)
• Message transfer agent (SMTP)
• Message Store (IMAP)

What is Application Architecture?

• Defines how the workloads
of a service are partitioned
or subdivided over a
network.

• This is done so that:
• More than one client can

access the service
• The workload can be

distributed to achieve better
performance

• Also Known As…
• Multitier Architecture
• Multilayered Architecture
• Client-Server Architecture

Layers of An Application

Presentation
Code and layout

responsible for the user
interface

Business Logic
Transformational logic at

the heart of what the
application actually does.

Data Access
Create, Read, Update and
Delete (CRUD) operations

Data
Data storage and retrieval

of Relevant Data.

Presentation Layer

• Code which addresses
User interface concerns

• Web: HTML and CSS
• Mobile: Xcode

interface builder /
Android studio

• Windows / Mac /
Linux: Varies

Business Logic Layer
• Code to address the

Transformational Logic of the
application; part of the
application’s functionality

• Written in a programming
language: Java, JavaScript,
Python, C#, etc…

Data Access Layer

• Responsible for CRUD
(Create, Read, Update,
Delete) Operations

• Code which transforms
operations into the DSL
(Domain specific Language)
to communicate with the
database. (Typically SQL).

Types of Application Architectures

1. Monolithic
2. Monolithic over distributed storage
3. Two-tier thin client
4. Two-tier fat-client
5. Three Tier
6. N-Tier
7. Enterprise Service Bus
8. Micro Services

Com
plexity

A Monolithic Application

• All layers within a single system
• Simplest design
• Single-User. Single Site. No

Scale.
• Multiple uses, multiple

instances.
• Example: MS Word, application

on your phone.

Presentation

Business Logic

Data Access

Data

Example: Monolithic Application

• Can two people work on the same PowerPoint file at the
same time? No!

• Can everyone in your group edit the same word document at
the same time? No!

Monolithic over Distributed Storage

• Data storage is over a
network but the rest of the
application is monolithic.

• Single-user multi-site.
• Example: Two people share a

word document over Google
Drive.

Presentation

Business Logic

Data Access

Data

File Storage

Cl
ie

nt
s

Classic Issue With Monolithic + Storage

• Concurrency was not built into the application!

Scaling Up
• We re-design / program the

application to support multiple users
by breaking up / splitting the layers.

Presentation

Business Logic

Data Access

Data

Presentation

Business Logic

Data Access

Data

Network +
MiddlewareScale Up

Cl
ie

nt
s

Se
rv

er

M
on

ol
ith

ic

Breaking Up Is Hard To Do!

• When you separate an application into parts and run them
separately they now require a way to communicate with
each other!

Presentation

Business Logic

Data Access

DataCl
ie

nt
s

Se
rv

er

“Hey Data Access Layer, I would like
you to save this new order for me.”

“Okay, business Logic. I saved it
for you the order ID is 909242”

Middleware

Middleware

• Middleware is software which provides inter-process
communications between the layers of an application.

• It is required whenever an application is split into layers over
a network.

• There are different types of middleware for access between
the different layers.

Middleware Alphabet Soup
Name What is it / What it does
ODBC (open database
connectivity)

Database management systems access

CORBA (common object
request broker architecture)

Business logic procedure call and data
exchange

REST (representational state
transfer)

A “pattern” that uses HTTP protocol for
business logic / data exchange. Foundation
of most web API’s

SOAP (simple object access
protocol)

Like REST but more overhead / payload.

ODATA (open data protocol) A spec for CRUD over HTTP using the REST
patters

2-Tier Client/Server
• In 2 Tier client/server the

application is split in two
parts separated by one layer
of middleware.

• This makes the application
multi-user and multi-Site.

• Common architecture in the
pre-consumer Internet era of
the 90’s.

Presentation

Business Logic

Data Access

Data

Network +
Middleware

Cl
ie

nt
s

Se
rv

er

Data Access

Data

Where is the Business Logic?
• “Thin Client” • “Fat Client”

Presentation

Business Logic

Data Access

Data

Network +
ODBC (example)

Presentation

Business Logic

Network +
Telnet (example)

Cl
ie

nt
s

Cl
ie

nt
s

Se
rv

er

Se
rv

er

Thin-Client, Fat-Client examples

• Fat Clients:
• The application itself must be installed before you can use it.
• Playing a game like Madden or Fortnite
• Microsoft Outlook for Email

• Thin Clients:
• Nothing needs to be installed for specific to the application for it

to be used.
• Playing a game in your Web Browser
• Gmail or Yahoo Mail

3-Tier Client/Server
• In 3 Tier client/server the

application is split into 3 parts.
Typically with a business logic and
data access layer in the middle tier.

• Multi-user, Multi-Site.
• Scales Vertically better than 2-tier
• Majority of business logic is on the

server
• Common architecture during the

Internet boom.

Business Logic

Data Access

Data
Se

rv
er

Da
ta

Presentation

Business Logic

Network +
ODBC (Ex)

Cl
ie

nt
s

Network +
CORBA (Ex)

Web 3-Tier Example
(Wordpress)

• Here’s is how the popular
web application WordPress
is architected.

Business Logic

Data Access

Data

Se
rv

er
D

at
a

Presentation

Business Logic

ODBC
Br

ow
se

r

HTTP / HTTPS

HTML/CSS

JavaScript

Apache+PHP

PHP ezSQL

MySQL

N-Tier

• Break Up the
Business Logic Even
More… into as many
Tiers as required.

• That’s a lot of
middleware. How do
we deal with all that
inter-process
communication?

SCHOOL OF INFORMATION STUDIES | SYRACUSE UNIVERSITY

Business Logic

Data Access

Database
Se

rv
ic

es
Da

ta

Presentation

Business LogicBr
ow

se
r

Business LogicW
eb

AP

I

Enterprise Service Bus
• The ESB is a software application which manages the

commuinication among independent systems.
• It provides a consistent messaging API and guarantees

delivery of information.
• It’s a more robust middleware replacement used as the

message backbone for N-tier applications.
• Multiple applications share messages across the same bus.

This is the foundation of Service-Oriented Architecture

Service-Oriented Architecture

Presentation

Business Logic

Business Logic

Data Access

Database

Business Logic

Presentation

Business Logic

Presentation

Business Logic

W
eb

si
te

M
ob

ile
 A

pp
CR

M
 A

pp

Enter-
Prise

Service
Bus

Business Logic

Ap
pl

ic
at

io
n

Ba
ck

-E
nd

CR
M

AP
I

TX
T

M
sg

Web As Middleware and Microservices

• The Internet ushered in major changes for application
development.

• The SOAP and REST protocols over HTTP made it easy for
developers to divide up the layers of their application and
split business logic into manageable microservices.

• These microservices manage a single responsibility, making
the application easier to update and manage.

Typical Micro Services Responsibilities

• Business Capability
• Customers
• Orders
• Inventory

• Messaging
• Email
• Push Notification
• TXT Alert

• Function / Task
• Transcode Video
• Convert a File
• Close-Caption Video
• Machine Learning

• Other Data
• Write Log Information
• Usage Statistics (Telemetry)

Micro Services

SCHOOL OF INFORMATION STUDIES | SYRACUSE UNIVERSITY

Business Logic

Data Access

Database

Se
rv

ic
es

Da
ta

Presentation

Business Logic

ODBC

Br
ow

se
r

HTTP REST

M
ob

ile
 A

pp

Business LogicW
eb

AP

I
Presentation

Business Logic

Business Logic

Data Access

Database

ODBC

…

HTTP REST

CL
IE

N
TS

SE
RV

ER
S

…

Micro Services Example

• Brower and Mobile
app are clients

• HTTP and REST API’s
are the Middleware

• Separate Services for
each business
capability of the
application

